Objective: This study aimed to investigate the relationship between cochlear implant (CI) electrode distances to the cochlea's inner wall (the modiolus) and electrical impedance measurements made at the CI's electrode contacts. We introduced a protocol for "three-point impedances" in which we recorded bipolar impedances in response to monopolar stimulation at a neighboring electrode. We aimed to assess the usability of three-point impedances and two existing CI impedance measurement methods (monopolar and four-point impedances) for predicting electrode positioning during CI insertion.
Methods: Impedances were recorded during stepwise CI electrode array insertions in cadaveric human temporal bones. The positioning of the electrodes with respect to the modiolus was assessed at each step using cone beam computed tomography. Linear mixed regression analysis was performed to assess the relationship between the impedances and electrode-modiolar distances. The experimental results were compared to clinical impedance data and to an existing lumped-element model of an implanted CI.
Results: Three-point and four-point impedances strongly correlated with electrode-modiolar distance. In contrast, monopolar impedances were only minimally affected by changes in electrode positioning with respect to the modiolus. An overall model specificity of 62% was achieved when incorporating all impedance parameters. This specificity could be increased beyond 73% when prior expectations of electrode positioning were incorporated in the model.
Conclusion: Three-point and four-point impedances are promising measures to predict electrode-modiolar distance in real-time during CI insertion.
Significance: This work shows how electrical impedance measurements can be used to predict the CI's electrode positioning in a biologically realistic model.