High male specific contribution of the X-chromosome to individual global recombination rate in dairy cattle

BMC Genomics. 2022 Feb 10;23(1):114. doi: 10.1186/s12864-022-08328-8.

Abstract

Background: Meiotic recombination plays an important role in reproduction and evolution. The individual global recombination rate (GRR), measured as the number of crossovers (CO) per gametes, is a complex trait that has been shown to be heritable. The sex chromosomes play an important role in reproduction and fertility related traits. Therefore, variants present on the X-chromosome might have a high contribution to the genetic variation of GRR that is related to meiosis and to reproduction.

Results: We herein used genotyping data from 58,474 New Zealand dairy cattle to estimate the contribution of the X-chromosome to male and female GRR levels. Based on the pedigree-based relationships, we first estimated that the X-chromosome accounted for 30% of the total additive genetic variance for male GRR. This percentage was equal to 19.9% when the estimation relied on a SNP-BLUP approach assuming each SNP has a small contribution. We then carried out a haplotype-based association study to map X-linked QTL, and subsequently fine-mapped the identified QTL with imputed sequence variants. With this approach we identified three QTL with large effect accounting for 7.7% of the additive genetic variance of male GRR. The associated effects were equal to + 0.79, - 1.16 and + 1.18 CO for the alternate alleles. In females, the estimated contribution of the X-chromosome to GRR was null and no significant association with X-linked loci was found. Interestingly, two of the male GRR QTL were associated with candidate genes preferentially expressed in testis, in agreement with a male-specific effect. Finally, the most significant QTL was associated with PPP4R3C, further supporting the important role of protein phosphatase in double-strand break repair by homologous recombination.

Conclusions: Our study illustrates the important role the X-chromosome can have on traits such as individual recombination rate, associated with testis in males. We also show that contribution of the X-chromosome to such a trait might be sex dependent.

MeSH terms

  • Animals
  • Cattle / genetics
  • Female
  • Fertility
  • Haplotypes
  • Male
  • Pedigree
  • Quantitative Trait Loci*
  • X Chromosome* / genetics