Immobilization and Evaluation of Penicillin G Acylase on Hydroxy and Aldehyde Functionalized Magnetic α-Fe2O3/Fe3O4 Heterostructure Nanosheets

Front Bioeng Biotechnol. 2022 Jan 28:9:812403. doi: 10.3389/fbioe.2021.812403. eCollection 2021.

Abstract

Magnetic α-Fe2O3/Fe3O4 heterostructure nanosheets were fabricated via hydrothermal calcination. The activity of penicillin G acylase (PGA), which was covalently immobilized onto silica-decorated heterostructure nanosheets, achieved the highest activity of 387.03 IU/g after 18 h of incubation with 0.1 ml of PGA. In contrast, the activity of free PGA reached the highest level when the temperature was 45°C with a pH of 8.0. However, the activity of free PGA changed more dramatically than immobilized PGA as the relative conditions changed. Moreover, the Michaelis-Menten constant (Km) and reusability of immobilized PGA were also explored. The results showed that free PGA Km and maximum rate (Vmax) were 0.0274 M and 1.167 μl/min, respectively. Km and Vmax values of immobilized PGA were 0.1082 M and 1.294 μl/min, respectively. After 12 cycles of repetitive use, immobilized PGA remained approximately 66% of its initial activity, indicating that the PGA immobilized onto the heterostructure nanosheets showed better stability and reusability than free PGA.

Keywords: hydrothermal calcination process; immobilization; magnetic α-Fe2O3/Fe3O4 heterogeneous nanosheets; penicillin G acylase; reusability.