Objective: The FlywheelMS study will explore the use of a real-world health record data set generated by PicnicHealth, a patient-centric health records platform, to improve understanding of disease course and patterns of care for patients with multiple sclerosis (MS).
Materials and methods: The FlywheelMS study aims to enroll 5000 adults with MS in the United States to create a large, deidentified, longitudinal data set for clinical research. PicnicHealth obtains health records, including paper charts, electronic health records, and radiology imaging files from any healthcare site. Using a large-scale health record processing pipeline, PicnicHealth abstracts standard and condition-specific data elements from structured (eg, laboratory test results) and unstructured (eg, narrative) text and maps these to standardized medical vocabularies. Researchers can use the resulting data set to answer empirical questions and study participants can access and share their harmonized health records using PicnicHealth's web application.
Results: As of November 24, 2020, more than 4176 participants from 49 of 50 US states have enrolled in the FlywheelMS study. A median of 200 pages of records have been collected from 14 different doctors over 8 years per participant. Abstraction precision, established through inter-abstractor agreement, is as high as 97.8% when identifying and mapping data elements to a standard ontology.
Conclusion: Using a commercial health records platform, the FlywheelMS study is generating a real-world, multimodal data set that could provide valuable insights about patients with MS. This approach to data collection and abstraction is disease-agnostic and could be used to address other clinical research questions in the future.
Keywords: data abstraction; health records; machine learning; multiple sclerosis; real-world data.
© The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association.