Smog chamber simulation on heterogeneous reaction of O3 and NO2 on black carbon under various relative humidity conditions

Sci Total Environ. 2022 Jun 1:823:153649. doi: 10.1016/j.scitotenv.2022.153649. Epub 2022 Feb 11.

Abstract

In this study, heterogeneous formation of nitrate from O3 reaction with NO2 on black carbon (BC) and KCl-treated BC surface in the presence of NH3 was simulated under 30-90% RH conditions by using a laboratory smog chamber. We found that O3 and NO2 in the chamber quickly reacted into N2O5 in the gas phase, which subsequently hydrolyzed into HNO3 and further neutralized with NH3 into NH4NO3 on the BC surface, along with a small amount of N2O5 decomposed into NO and NO2 through a reaction with the BC surface active site. Meanwhile, the fractal BC aggregates restructured and condensed to spherical particles during the NH4NO3 coating process. Compared to that during the exposure to NO2 or O3 alone, the presence of strong signals of CH2O+, CH2O2+ and CH4NO+ during the simultaneous exposure to both NO2 and O3 suggested a synergetic oxidizing effect of NO2 and O3, which significantly activated the BC surface by forming carbonyl, carboxylic and nitro groups, promoted the adsorption of water vapor onto the BC surface and enhanced the NH4NO3 formation. Under <75 ± 2% RH conditions the coating process of NH4NO3 on the BC surface consisted of a diffusion of N2O5 onto the surface and a subsequent hydrolysis, due to the limited number of water molecules adsorbed. However, under 90 ± 2% RH conditions N2O5 directly hydrolyzed on the aqueous phase of the BC surface due to the multilayer water molecules adsorbed, which caused an instant NH4NO3 formation on the surface without any delay. The coating rate of NH4NO3 on KCl-treated BC particles was 3-4 times faster than that on the pure BC particles at the initial stage, indicating an increasing formation of NH4NO3, mainly due to an enhanced hygroscopicity of BC by KCl salts.

Keywords: Ammonia; Formation mechanism; N(2)O(5); Nitrate; Synergetic oxidation.

MeSH terms

  • Carbon
  • Humidity
  • Nitrogen Dioxide* / chemistry
  • Smog*
  • Soot

Substances

  • Smog
  • Soot
  • Carbon
  • Nitrogen Dioxide