Factors associated with progression and mortality among patients undergoing stereotactic radiosurgery for intracranial metastasis: results from a national real-world registry

J Neurosurg. 2022 Jan 14;137(4):985-998. doi: 10.3171/2021.10.JNS211410. Print 2022 Oct 1.

Abstract

Objective: Stereotactic radiosurgery (SRS) has been increasingly employed in recent years to treat intracranial metastatic lesions. However, there is still a need for optimization of treatment paradigms to provide better local control and prevent progressive intracranial disease. In the current study, the authors utilized a national collaborative registry to investigate the outcomes of patients with intracranial metastatic disease who underwent SRS and to determine factors associated with lesion treatment response, overall progression, and mortality.

Methods: The NeuroPoint Alliance SRS registry was queried for all patients with intracranial metastatic lesions undergoing single- or multifraction SRS at participating institutions between 2016 and 2020. The main outcomes of interest included lesion response (lesion-level analysis), progression using Response Assessment for Neuro-Oncology criteria, and mortality (patient-level analysis). Kaplan-Meier analysis was used to report time to progression and overall survival, and multivariable Cox proportional hazards analysis was used to investigate factors associated with lesion response, progression, and mortality.

Results: A total of 501 patients (1447 intracranial metastatic lesions) who underwent SRS and had available follow-up were included in the current analyses. The most common primary tumor was lung cancer (49.5%, n = 248), followed by breast (15.4%, n = 77) and melanoma (12.2%, n = 61). Most patients had a single lesion (44.9%, n = 225), 29.3% (n = 147) had 2 or 3 lesions, and 25.7% (n = 129) had > 3 lesions. The mean sum of baseline measurements of the lesions according to Response Evaluation Criteria in Solid Tumors (RECIST) was 35.54 mm (SD 25.94). At follow-up, 671 lesions (46.4%) had a complete response, 631 (43.6%) had a partial response (≥ 30% decrease in longest diameter) or were stable (< 30% decrease but < 20% increase), and 145 (10%) showed progression (> 20% increase in longest diameter). On multivariable Cox proportional hazards analysis, melanoma-associated lesions (HR 0.48, 95% CI 0.34-0.67; p < 0.001) and larger lesion size (HR 0.94, 95% CI 0.93-0.96; p < 0.001) showed lower odds of lesion regression, while a higher biologically effective dose was associated with higher odds (HR 1.001, 95% CI 1.0001-1.00023; p < 0.001). A total of 237 patients (47.3%) had overall progression (local failure or intracranial progressive disease), with a median time to progression of 10.03 months after the index SRS. Factors found to be associated with increased hazards of progression included male sex (HR 1.48, 95% CI 1.108-1.99; p = 0.008), while administration of immunotherapy (before or after SRS) was found to be associated with lower hazards of overall progression (HR 0.62, 95% CI 0.460-0.85; p = 0.003). A total of 121 patients (23.95%) died during the follow-up period, with a median survival of 19.4 months from the time of initial SRS. A higher recursive partitioning analysis score (HR 21.3485, 95% CI 1.53202-3.6285; p < 0.001) was found to be associated with higher hazards of mortality, while single-fraction treatment compared with hypofractionated treatment (HR 0.082, 95% CI 0.011-0.61; p = 0.015), administration of immunotherapy (HR 0.385, 95% CI 0.233-0.64; p < 0.001), and presence of single compared with > 3 lesions (HR 0.427, 95% CI 0.187-0.98; p = 0.044) were found to be associated with lower risk of mortality.

Conclusions: The comparability of results between this study and those of previously published clinical trials affirms the value of multicenter databases with real-world data collected without predetermined research purpose.

Keywords: CNS; RANO; SRS; metastasis; mortality; oncology; progression; real world; registry; stereotactic radiosurgery; tumor.