Seven parabens including methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), iso-propylparaben (iPrP), butylparaben (BuP), benzylparaben (BzP), and heptylparaben (HepP) were determined in bottled water, tap water, river water, lake water, and wastewater samples collected from Hanoi, Vietnam, using solid phase extraction (SPE) followed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The highest total concentration of parabens were measured in wastewater (range, 27.3-1050 ng/L; mean/median, 268/175 ng/L), followed by lake water (range, 18.0-254 ng/L; mean/median, 51.7/58.5 ng/L), river water (range, 16.5-52.1 ng/L; mean/median, 32.1/42.6 ng/L), tap water (range, 5.01-54.3 ng/L; mean/median, 28.6/41.1 ng/L), and bottled water (range, 1.56-39.9 ng/L; mean/median, 6.92/9.19 ng/L). Methylparaben and propylparaben were the predominant compounds found in all samples. The mean estimated human exposure dose of parabens through drinking bottled water was 0.27 ng/kg-bw/day, which is 6 orders of magnitude below the safety threshold recommended by the Joint FAO/WHO Expert Committee on Food Additive in 1974 (10 mg/kg-bw/day). Concentrations of parabens measured in river water, lake water, and wastewater samples were assessed to pose low to moderate ecological risks to aquatic organisms (0.1 < RQ < 1). Methyl, ethyl, and propyl parabens exhibited significant correlations in water samples.
Keywords: Aquatic environment; Ecological risk; Human exposure; Parabens; UPLC-MS/MS.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.