Background: Hereditary hemorrhagic telangiectasia (HHT) is a multiorgan vascular dysplasia with limited data regarding its neurovascular manifestations and genotype-phenotype correlation in children. The objective of this study was to describe the neurovascular findings in a large cohort of children with HHT and correlate between phenotype and genotype.
Methods: This retrospective study was conducted on 221 children (<18 years) with a definite or possible diagnosis of HHT based on Curacao criteria, or with positive genetics for the mutated genes of ENG, ACVRL-1, and SMAD-4, who also underwent brain MRI and/or conventional angiography. Demographic and clinical information, imaging findings, and follow up information were gathered.
Results: Two hundred twenty-one children with HHT (70.6% genetically confirmed, and 99.5% positive family history) were included, with a median age of 7 years (interquartile range: 3 to 11 years) and 58.8% male predominance. Neurovascular lesions were found in 64 of 221 (28.9%), with 3.1% prevalence of intracranial hemorrhage. The most commonly observed vascular malformations were developmental venous anomalies (48.5%) and brain arteriovenous malformations (AVMs) (31.2%), followed by capillary malformations (14.1%). Multiple AVMs were seen in 10.0% of the cohort. We found no instances of de novo AVM (1281.8 patient-years).A significantly higher proportion of patients with ENG mutations (19.7%) had brain AVM than those with ACVRL-1 (4.9%) and SMAD-4 (0%) mutations (P < 0.01). There was no significant difference in the hemorrhagic risk of shunting lesions associated with ENG (35.3%) or ACVRL-1 (33.3%) positivity (P = 0.9).
Conclusions: We describe the neurovascular imaging and genetic findings from a large pediatric cohort of HHT, to enhance clinical awareness and guide management of patients with HHT.
Keywords: Brain arteriovenous malformations; Genotype-phenotype correlation; Hereditary hemorrhagic telangiectasia; Magnetic resonance imaging.
Crown Copyright © 2021. Published by Elsevier Inc. All rights reserved.