A comparison of experimental assays and analytical methods for genome-wide identification of active enhancers

Nat Biotechnol. 2022 Jul;40(7):1056-1065. doi: 10.1038/s41587-022-01211-7. Epub 2022 Feb 17.

Abstract

Mounting evidence supports the idea that transcriptional patterns serve as more specific identifiers of active enhancers than histone marks; however, the optimal strategy to identify active enhancers both experimentally and computationally has not been determined. Here, we compared 13 genome-wide RNA sequencing (RNA-seq) assays in K562 cells and show that nuclear run-on followed by cap-selection assay (GRO/PRO-cap) has advantages in enhancer RNA detection and active enhancer identification. We also introduce a tool, peak identifier for nascent transcript starts (PINTS), to identify active promoters and enhancers genome wide and pinpoint the precise location of 5' transcription start sites. Finally, we compiled a comprehensive enhancer candidate compendium based on the detected enhancer RNA (eRNA) transcription start sites (TSSs) available in 120 cell and tissue types, which can be accessed at https://pints.yulab.org . With knowledge of the best available assays and pipelines, this large-scale annotation of candidate enhancers will pave the way for selection and characterization of their functions in a time- and labor-efficient manner.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Enhancer Elements, Genetic* / genetics
  • Promoter Regions, Genetic / genetics
  • RNA* / genetics
  • Sequence Analysis, RNA / methods
  • Transcription Initiation Site

Substances

  • RNA