Patients with lymphangioleiomyomatosis (LAM) frequently experience delays in diagnosis, owing partly to the delayed characterization of imaging findings. This project aimed to develop a machine learning model to distinguish LAM from other diffuse cystic lung diseases (DCLDs). Computed tomography scans from patients with confirmed DCLDs were acquired from registry datasets and a recurrent convolutional neural network was trained for their classification. The final model provided sensitivity and specificity of 85% and 92%, respectively, for LAM, similar to the historical metrics of 88% and 97%, respectively, by experts. The proof-of-concept work holds promise as a clinically useful tool to assist in recognizing LAM.
Keywords: Computed tomography; Diffuse cystic lung diseases; Lymphangioleiomyomatosis; Machine learning.
Copyright © 2022 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.