COVID-19 is an infectious disease that caused a global pandemic affecting people worldwide. As disease detection and vaccine rollout continue to progress, there is still a need for efficient diagnostic tools to satisfy continued testing needs. This preliminary study evaluated a novel SARS-CoV-2 diagnostic test called DirectDetect SARS-CoV-2 Direct Real-time reverse transcriptase polymerase chain reaction (RT-PCR) based on a limited sample size of 24 respiratory samples from 14 SARS-CoV-2-positive patients. The test is advantageous compared to others on the market since it does not require viral transport medium or viral RNA extraction prior to nucleic acid amplification and detection. This capability transforms the hours-long sample preparation time into a minutes-long procedure while also eliminating the need for many costly reagents which may be difficult to obtain during the surge in nucleic acid-based testing during the pandemic. The results show a positive agreement of 94.7, 100, and 94.7% between dry sample swabs, treated samples, and untreated samples tested using the DirectDetect SARS-CoV-2 Direct Real-time RT-PCR compared to tests used in a clinical laboratory, respectively. The findings indicate that DirectDetect can be used for multiple different sample types while reducing the number of reagents and time needed for diagnosis. Although this study shows promising results using the DirectDetect results, further validation of this test using a larger sample set is required to assess the true performance of this test.
© 2022 The Authors. Published by American Chemical Society.