scanMiR: a biochemically based toolkit for versatile and efficient microRNA target prediction

Bioinformatics. 2022 Apr 28;38(9):2466-2473. doi: 10.1093/bioinformatics/btac110.

Abstract

Motivation: microRNAs are important post-transcriptional regulators of gene expression, but the identification of functionally relevant targets is still challenging. Recent research has shown improved prediction of microRNA-mediated repression using a biochemical model combined with empirically-derived k-mer affinity predictions; however, these findings are not easily applicable.

Results: We translate this approach into a flexible and user-friendly bioconductor package, scanMiR, also available through a web interface. Using lightweight linear models, scanMiR efficiently scans for binding sites, estimates their affinity and predicts aggregated transcript repression. Moreover, flexible 3'-supplementary alignment enables the prediction of unconventional interactions, such as bindings potentially leading to target-directed microRNA degradation or slicing. We showcase scanMiR through a systematic scan for such unconventional sites on neuronal transcripts, including lncRNAs and circRNAs. Finally, in addition to the main bioconductor package implementing these functions, we provide a user-friendly web application enabling the scanning of sequences, the visualization of predicted bindings and the browsing of predicted target repression.

Availability and implementation: scanMiR and companion packages are implemented in R, released under the GPL-3 and accessible on Bioconductor (https://bioconductor.org/packages/release/bioc/html/scanMiR.html) as well as through a shiny web server (https://ethz-ins.org/scanMiR/).

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites
  • MicroRNAs* / genetics
  • RNA, Long Noncoding*
  • Software
  • Transcription Factors

Substances

  • MicroRNAs
  • RNA, Long Noncoding
  • Transcription Factors