Optical proxies based on light scattering measurements have potential to improve the study and monitoring of aquatic environments. In this study, we evaluated several optical proxies for characterization of particle mass concentration, composition, and size distribution of suspended particulate matter from two contrasting coastal marine environments. We expanded upon our previous study of Southern California coastal waters, which generally contained high proportions of organic particles, by conducting angle-resolved polarized light scattering measurements in predominantly turbid and inorganic-particle dominated Arctic coastal waters near Prudhoe Bay, Alaska. We observed that the particulate backscattering coefficient bbp was the most effective proxy for the mass concentration of suspended particulate matter (SPM) when compared with particulate scattering and attenuation coefficients bp and cp. Improvements were seen with bbp as a proxy for the concentration of particulate organic carbon (POC), although only if particulate assemblages were previously classified in terms of particle composition. We found that the ratio of polarized-light scattering measurements at 110º and 18º was superior in performance as a proxy for the composition parameter POC/SPM in comparison to the particulate backscattering ratio bbp/bp. The maximum value of the degree of linear polarization DoLPp,max observed within the range of scattering angles 89°-106° was found to provide a reasonably good proxy for a particle size parameter (i.e., 90th percentile of particle volume distribution) which characterizes the proportions of small- and large-sized particles. These findings can inform the development of polarized light scattering sensors to enhance the capabilities of autonomous platforms.