PTEN Loss and BRCA1 Promoter Hypermethylation Negatively Predict for Immunogenicity in BRCA-Deficient Ovarian Cancer

JCO Precis Oncol. 2022 Feb:6:e2100159. doi: 10.1200/PO.21.00159.

Abstract

Purpose: Ovarian cancers can exhibit a prominent immune infiltrate, but clinical trials have not demonstrated substantive response rates to immune checkpoint blockade monotherapy. We aimed to understand genomic features associated with immunogenicity in BRCA1/2 mutation-associated cancers.

Materials and methods: Using the Cancer Genome Atlas whole-exome sequencing, methylation, and expression data, we analyzed 66 ovarian cancers with either germline or somatic loss of BRCA1/2 and whole-exome sequencing, immunohistochemistry, and CyTOF in 20 ovarian cancers with germline BRCA1/2 pathogenic variants from Penn.

Results: We found two groups of BRCA1/2 ovarian cancers differing in their immunogenicity: (1) 37 tumors significantly enriched for PTEN loss (11, 30%) and BRCA1 promoter-hypermethylated (10, 27%; P = .0016) and (2) PTEN wild-type (28 of 29 tumors) cancers, with the latter group having longer overall survival (OS; P = .0186, median OS not reached v median OS = 66.1 months). BRCA1/2-mutant PTEN loss and BRCA1 promoter-hypermethylated cancers were characterized by the decreased composition of lymphocytes estimated by gene expression (P = .0030), cytolytic index (P = .034), and cytokine expression but higher homologous recombination deficiency scores (P = .00013). Large-scale state transitions were the primary discriminating feature (P = .001); neither mutational burden nor neoantigen burden could explain differences in immunogenicity. In Penn tumors, PTEN loss and high homologous recombination deficiency cancers exhibited fewer CD3+ (P = .05), CD8+ (P = .012), and FOXP3+ (P = .0087) T cells; decreased PRF1 expression (P = .041); and lower immune costimulatory and inhibitory molecule expression.

Conclusion: Our study suggests that within ovarian cancers with genetic loss of BRCA1/2 are two subsets exhibiting differential immunogenicity, with lower levels associated with PTEN loss and BRCA hypermethylation. These genomic features of BRCA1/2-associated ovarian cancers may inform considerations around how to optimally deploy immune checkpoint inhibitors in the clinic.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • BRCA1 Protein / genetics
  • Carcinoma, Ovarian Epithelial / genetics
  • DNA Methylation / genetics
  • Germ-Line Mutation*
  • Humans
  • Ovarian Neoplasms* / genetics
  • PTEN Phosphohydrolase / genetics
  • Promoter Regions, Genetic / genetics

Substances

  • BRCA1 Protein
  • BRCA1 protein, human
  • PTEN Phosphohydrolase
  • PTEN protein, human