Background: Recent advances in mobile and wearable technologies have led to new forms of interventions, called "Just-in-Time Adaptive Interventions" (JITAI). JITAIs interact with the individual at the most appropriate time and provide the most appropriate support depending on the continuously acquired Intensive Longitudinal Data (ILD) on participant physiology, behavior, and contexts. These advances raise an important question: How do we model these data to better understand and intervene on health behaviors? The HeartSteps II study, described here, is a Micro-Randomized Trial (MRT) intended to advance both intervention development and theory-building enabled by the new generation of mobile and wearable technology. Methods: The study involves a year-long deployment of HeartSteps, a JITAI for physical activity and sedentary behavior, with 96 sedentary, overweight, but otherwise healthy adults. The central purpose is twofold: (1) to support the development of modeling approaches for operationalizing dynamic, mathematically rigorous theories of health behavior; and (2) to serve as a testbed for the development of learning algorithms that JITAIs can use to individualize intervention provision in real time at multiple timescales. Discussion and Conclusions: We outline an innovative modeling paradigm to model and use ILD in real- or near-time to individually tailor JITIAs.
Keywords: Mobile Health; behavioral health; digital health; intensive longitudinal data; mHealth; new technologies; physical activity; psychosocial theory; real-time interventions.