Simple and robust architecture of a laser system for atom interferometry

Opt Express. 2022 Jan 31;30(3):3358-3366. doi: 10.1364/OE.447073.

Abstract

We report a compact and robust architecture of a versatile laser system that allows the implementation of several advanced atom interferometry techniques, such as Bragg diffraction, Bloch oscillations, or single and double Raman diffraction. A low noise, frequency tunable fiber-laser (λ = ~1560 nm) serves as the seed. A couple of fiber-coupled amplifiers followed by two fibered second-harmonic generators produce a pair of phase-locked, frequency-controllable laser beams at 780 nm. Manipulating frequencies of individual laser beams at λ = 1560 nm before the amplifiers, facilitates achieving a maximum relative detuning of ± 20 MHz, while maintaining a constant output power. We present the scheme to implement Raman spectroscopy using our laser system and discuss its advantages. Finally, the overall performance of the laser setup has been evaluated by realizing interferometers in copropagating Ramsey-Raman and counterpropagating Bragg configuration.