Quantitative Evaluation of Hypomimia in Parkinson's Disease: A Face Tracking Approach

Sensors (Basel). 2022 Feb 10;22(4):1358. doi: 10.3390/s22041358.

Abstract

Parkinson's disease (PD) is a neurological disorder that mainly affects the motor system. Among other symptoms, hypomimia is considered one of the clinical hallmarks of the disease. Despite its great impact on patients' quality of life, it remains still under-investigated. The aim of this work is to provide a quantitative index for hypomimia that can distinguish pathological and healthy subjects and that can be used in the classification of emotions. A face tracking algorithm was implemented based on the Facial Action Coding System. A new easy-to-interpret metric (face mobility index, FMI) was defined considering distances between pairs of geometric features and a classification based on this metric was proposed. Comparison was also provided between healthy controls and PD patients. Results of the study suggest that this index can quantify the degree of impairment in PD and can be used in the classification of emotions. Statistically significant differences were observed for all emotions when distances were taken into account, and for happiness and anger when FMI was considered. The best classification results were obtained with Random Forest and kNN according to the AUC metric.

Keywords: Facial Action Coding System; Parkinson’s disease; classification; emotions; face; facial expression; feature tracking; hypomimia.

MeSH terms

  • Emotions
  • Face
  • Facial Expression
  • Humans
  • Parkinson Disease* / diagnosis
  • Quality of Life