Moisture content and shrinkage strain are essential parameters during the wood drying process. The accurate detection of these parameters has very important significance for controlling the drying process and minimizing drying defects. The presented study describes an electrochemical method to determine wood moisture content and shrinkage strain during drying, and the accuracy of this method is also evaluated. According to the results, the electrical resistance of the samples increased with the decrease in wood moisture content. As the moisture content changed from 42% to 12%, the resistance increased from 1.0 × 107 Ω to 1.2 × 108 Ω. A polynomial fitting curve was fitted with a determination coefficient of 0.937 to describe the relationship between moisture content and electrical resistance. In addition, both the shrinkage strain and resistance change rate increased with the decrease in wood moisture content, especially for the moisture content range of 23% to 8%, where the shrinkage strain and resistance change rate increased by 4% and 30%, respectively. The shrinkage strain increased exponentially with the increase in the resistance change rate; thereby, an exponential regression equation was proposed with a determination coefficient of 0.985, expressing the correlation between the two. This demonstrates the feasibility of the electrochemical method for measuring wood moisture content and shrinkage strain.
Keywords: electrochemical method; moisture content; shrinkage strain; wood water loss.