The microbial degradation of synthetic and natural poly(cis-1,4-isoprene) rubber is expected to become an alternative treatment technique for waste from poly(cis-1,4-isoprene) products, such as scrap tires. A gram-positive rubber-degrading bacterium, Rhodococcus sp. strain RDE2, was isolated from the waste of a rubber-processing factory in Vietnam. This strain grew on natural rubber as a sole source of carbon and energy and produced oligo-isoprenoid metabolites containing aldehyde groups from poly(cis-1,4-isoprene). To identify the genes responsible for poly(cis-1,4-isoprene) degradation, the complete genome sequence of this strain was determined. The complete genome sequence consists of a 5,715,406 bp chromosome and 6 plasmids (GenBank accession numbers AP025186.1 to AP025192.1) with an average GC content of 67.9%. The genome contains 5358 protein-coding sequences and 12 and 68 copies of rRNA and tRNA genes, respectively. Based on genome sequence analysis, the lcp gene (RDE2_08,770), responsible for the initial step of poly(cis-1,4-isoprene) degradation, was identified. The gene product obtained from Escherichia coli depolymerizes poly(cis-1,4-isoprene) to low-molecular-weight oligo-isoprenoids. The transcription of this gene is activated during the utilization of poly(cis-1,4-isoprene) in strain RDE2. The lcpR gene (RDE2_08,760), which encodes a putative transcriptional regulator, is located upstream of lcp. The lcpR gene product recognizes the promoter region of lcp. When the lcpR gene is deleted, the constitutive transcription of lcp is observed. Thus, it is inferred that the LcpR negatively regulates lcp transcription. These results strongly suggest that the lcp and lcpR genes are involved in poly(cis-1,4-isoprene) utilization in strain RDE2.
Keywords: Complete genome sequence; Natural rubber; Poly(cis-1,4-isoprene); Rhodococcus; TetR/AcrR-type transcriptional regulator.
Copyright © 2022 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.