Colorectal cancer (CRC) is the most common malignancy of the gastrointestinal tract. The stroma and the tumoral microenvironment (TME) represent ecosystem-like biological networks and are new frontiers in CRC. The present study demonstrates the use of a novel machine learning-based superpixel approach for whole slide images to unravel this biology. Findings of significance include the association of low proportionated stromal area, high immature stromal percentage, and high myxoid stromal ratio (MSR) with worse prognostic outcomes in CRC. Overall, stromal computational markers outperformed all others at predicting clinical outcomes. MSR may be able to prognosticate patients independent of pathological stage, representing an optimal way to effectively prognosticate CRC patients which circumvents the need for more extensive molecular and/or computational profiling. The superpixel approaches to the TME demonstrated here can be performed by a trained pathologist and recorded during synoptic cancer reporting with appropriate quality assurance. Future clinical trials will have the ultimate say in determining whether we can better tailor the need for adjuvant therapy in patients with CRC.
Keywords: Colorectal Cancer; Frontiers Beyond the Microscope; Stromal Differentiation; Superpixel Segmentation; Tumoral Microenvironment.
© 2022 The Authors.