Background: Finding an effective regulator to avoid harmful effects caused by excessive reactive oxygen species (ROS) is a bottleneck during oocyte in vitro maturation (IVM). Previously, we found that peroxiredoxin 4 (Prdx4) expression is significantly higher in mature cumulus cell-oocyte complexes (COCs) than in immature COCs. Prdx4 belongs to the antioxidant enzyme family and can catalyze the reduction of H2O2.
Results: In this study, we established an oxidative stress model with mouse COCs cultured in vitro. Treatment with H2O2 decreased cumulus expansion indexes and oocyte maturation in a concentration-dependent manner, indicating follicular development dysplasia. Infection with a Prdx4-overexpressing adenovirus significantly attenuated H2O2-induced changes, exhibiting effects similar to those of the intracellular ROS scavenger tiron (the positive control). Furthermore, the results confirmed that the protective effect of Prdx4 on oocyte maturation may be due to reductions in ROS levels and apoptosis. However, when the gap junctions between cumulus cells (CCs) and oocytes were destroyed, Prdx4 overexpression did not exert antiapoptotic effects. The expression levels of the gap junction marker protein CX43 were significantly recovered in the Prdx4-overexpressing group.
Conclusions: These results demonstrate that Prdx4 in CCs may be a new favorable regulator that improves in vitro-matured oocyte quality and enhances oocyte developmental competence by preventing CC apoptosis caused by oxidative stress through gap junctions. The findings expand the body of knowledge regarding follicle development, and the identification of Prdx4 as a new favorable regulator will aid in immature oocyte IVM.
Keywords: Cumulus cell-oocyte complex; Follicular development; Gap junction; Oxidative stress; Peroxiredoxin 4.
Copyright © 2022 Elsevier Inc. All rights reserved.