Gadolinium-Coated Mesoporous Silica Nanoparticle for Magnetic Resonance Imaging

Front Chem. 2022 Feb 15:10:837032. doi: 10.3389/fchem.2022.837032. eCollection 2022.

Abstract

Magnetic resonance molecular imaging can provide anatomic, functional and molecular information. However, because of the intrinsically low sensitivity of magnetic resonance imaging (MRI), high-performance MRI contrast agents are required to generate powerful image information for image diagnosis. Herein, we describe a novel T 1 contrast agent with magnetic-imaging properties facilitated by the gadolinium oxide (Gd2O3) doping of mesoporous silica nanoparticles (MSN). The size, morphology, composition, MRI relaxivity (r 1 ), surface area and pore size of these nanoparticles were evaluated following their conjugation with Gd2O3 to produce Gd2O3@MSN. This unique structure led to a significant enhancement in T 1 contrast with longitudinal relaxivity (r 1 ) as high as 51.85 ± 1.38 mM-1s-1. Gd2O3@MSN has a larger T 1 relaxivity than commercial gadolinium diethylene triamine pentaacetate (Gd-DTPA), likely due to the geometrical confinement effect of silica nanoparticles. These results suggest that we could successfully prepare a novel high-performance T 1 contrast agent, which may be a potential candidate for in-vivo MRI.

Keywords: contrast agent; cytotoxicity; gadolinium oxide; magnetic resonance imaging; mesoporous silica nanoparticle.