Educational data mining research has demonstrated that the large volume of learning data collected by modern e-learning systems could be used to recognize student behavior patterns and group students into cohorts with similar behavior. However, few attempts have been done to connect and compare behavioral patterns with known dimensions of individual differences. To what extent learner behavior is defined by known individual differences? Which of them could be a better predictor of learner engagement and performance? Could we use behavior patterns to build a data-driven model of individual differences that could be more useful for predicting critical outcomes of the learning process than traditional models? Our paper attempts to answer these questions using a large volume of learner data collected in an online practice system. We apply a sequential pattern mining approach to build individual models of learner practice behavior and reveal latent student subgroups that exhibit considerably different practice behavior. Using these models we explored the connections between learner behavior and both, the incoming and outgoing parameters of the learning process. Among incoming parameters we examined traditionally collected individual differences such as self-esteem, gender, and knowledge monitoring skills. We also attempted to bridge the gap between cluster-based behavior pattern models and traditional scale-based models of individual differences by quantifying learner behavior on a latent data-driven scale. Our research shows that this data-driven model of individual differences performs significantly better than traditional models of individual differences in predicting important parameters of the learning process, such as performance and engagement.
Keywords: SQL; individual differences; learner modeling; learning technology; online practice; sequential pattern mining.
Copyright © 2022 Akhuseyinoglu and Brusilovsky.