The development of high-efficiency methanol oxidation electrocatalysts with acceptable costs is central to the practical use of direct methanol fuel cell. In this work, a convenient interfacial engineering strategy is developed to the design and construction of quasi-one-dimensional worm-shaped palladium nanocrystals strongly coupled with positively-charged polyelectrolyte-modified Ti3C2Tx MXene (Pd NWs/PDDA-MX) via the direct electrostatic attractions. Because of the intriguing structural features including ultrathin-sheet nature, homogeneous Pd dispersion, numerous grain boundaries, strong electronic interaction, and high metallic conductivity, the as-fabricated Pd NWs/PDDA-MX hybrid shows superior electrocatalytic performance with a large electrochemically active surface area of 105.3 m2 g-1, a high mass activity of 1526.5 mA mg-1, and reliable long-term durability towards alkaline methanol oxidation reaction, far outperforming the commercial Pd nanoparticle/carbon catalysts. Density functional theory calculation further demonstrate that there are strong electronic interactions in the Pd nanoworm/Ti3C2Tx model with a depressed CO adsorption energy, thereby guaranteeing a stable interfacial contact as well as strong antitoxic ability.
Keywords: Electrocatalysts; Fuel cells; MXene nanosheets; Pd nanoworms; Polyelectrolyte.
Copyright © 2022 Elsevier Inc. All rights reserved.