Microwave 3D Imaging System Featuring the Phase Coherence Factor for Improved Beamforming

Curr Med Imaging. 2022;18(9):939-951. doi: 10.2174/1573405618666220304093447.

Abstract

Background: This paper presents an improved radar-based imaging system for breast cancer detection that features p-slot ultrawideband antennae in a 32-array set-up. The improved reconstruction algorithm incorporates the phase coherence factor (PCF) into the conventional delay and sum (DAS) beamforming algorithm, thus effectively suppressing noise arising from the side- and gratinglobe interferences.

Methods: The system is tested by using several breast models fabricated from chemical mixtures formulated on the basis of realistic human tissues. Each model is placed in a hemispherical breast radome that was fabricated from polylactide material and surrounded by 32 p-slot antennae mounted in four concentric layers. These antennae are connected to an 8.5 GHz vector network analyser through two 16-channel multiplexers that automatically switch different combinations of transmitter and receiver pairs in a sequential manner.

Results: The system can accurately detect 5 mm tumours in a complex and homogeneously dense 3D breast model with an average signal-to-clutter ratio and full-width half-maximum of 7.0 dB and 2.3 mm, respectively. These values are more competitive than the values of other beamforming algorithms, even with contrasts as low as 1:2.

Conclusion: The proposed PCF-weighted DAS is the best-performing algorithm amongst the tested beamforming techniques. This research paves the way for a clinical trial involving human subjects. Our laboratory is planning such a trial as part of future work.

Keywords: Breast cancer detection; beamforming; delay and sum; phase coherence factor; side-lobe noise; ultrawideband.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Humans
  • Image Processing, Computer-Assisted* / methods
  • Imaging, Three-Dimensional
  • Microwaves*
  • Phantoms, Imaging