Interpenetrated metal-organic frameworks with enhanced photoluminescence for selective recognition of m-xylene from xylene isomers

Dalton Trans. 2022 Mar 22;51(12):4790-4797. doi: 10.1039/d1dt03968g.

Abstract

Two novel luminescent metal-organic frameworks (MOFs), [Zn3(TCA)2(BPB)2]n (DZU-101, where H3TCA = 4,4',4''-tricarboxyltriphenylamine and BPB = 1,4-bis(pyrid-4-yl)benzene) and [Zn3(TCA)2(BPB)DMA]n (DZU-102), based on the same ligands and metal ions were synthesized by regulating the amount of water in the solvothermal reaction system. Structural analyses show that the two MOFs have pillar-layered frameworks with Zn3 clusters connected by the TCA3- and BPB ligands. Interestingly, DZU-102 possessed a two-fold interpenetrated framework distinct from the individual network of DZU-101. As a result, DZU-102 showed a visual fluorescence color change from chartreuse to azure in m-xylene, while the fluorescence color was turquoise in p-/o-xylene with no change. Furthermore, compared with p/o-xylene, the fluorescence emission peak of DZU-102 in m-xylene suspension produced an obvious blue shift. Moreover, selective fluorescence sensing experiments were also carried out, which demonstrated that the degree of peak shift was related to the concentration of m-xylene, indicating the potential application of DZU-102 in fluorescence sensing of m-xylene from xylene isomers and further revealed the application of structural interpenetration for luminescence tuning of MOFs.