Conjugated Metal-Organic Macrocycles: Synthesis, Characterization, and Electrical Conductivity

J Am Chem Soc. 2022 Mar 16;144(10):4515-4521. doi: 10.1021/jacs.1c12596. Epub 2022 Mar 7.

Abstract

The dimensional reduction of solids into smaller fragments provides a route to achieve new physical properties and gain deeper insight into the extended parent structures. Here, we report the synthesis of CuTOTP-OR (TOTPn- = 2,3,6,7-tetraoxidotriphenylene), a family of copper-based macrocycles that resemble truncated fragments of the conductive two-dimensional (2D) metal-organic framework Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene). The planar metal-organic macrocycles self-assemble into ordered nanotubes with internal diameters of ∼2 nm and short interlayer distances of ∼3.20 Å. Strong π-π stacking interactions between macrocycles facilitate out-of-plane charge transport, and pressed pellet conductivities as high as 2(1) × 10-3 S cm-1 are observed. Peripheral alkyl functionalization enhances solution processability and enables the fabrication of thin-film field-effect transistor devices. Ambipolar charge transport is observed, suggesting that similar behavior may be operative in Cu3(HHTP)2. By coupling the attractive features of metal-organic frameworks with greater processability, these macrocycles enable facile device integration and a more nuanced understanding of out-of-plane charge transport in 2D conductive metal-organic frameworks.