Opioid-Induced Pronociceptive Signaling in the Gastrointestinal Tract Is Mediated by Delta-Opioid Receptor Signaling

J Neurosci. 2022 Apr 20;42(16):3316-3328. doi: 10.1523/JNEUROSCI.2098-21.2022. Epub 2022 Mar 7.

Abstract

Opioid tolerance (OT) leads to dose escalation and serious side effects, including opioid-induced hyperalgesia (OIH). We sought to better understand the mechanisms underlying this event in the gastrointestinal tract. Chronic in vivo administration of morphine by intraperitoneal injection in male C57BL/6 mice evoked tolerance and evidence of OIH in an assay of colonic afferent nerve mechanosensitivity; this was inhibited by the δ-opioid receptor (DOPr) antagonist naltrindole when intraperitoneally injected in previous morphine administration. Patch-clamp studies of DRG neurons following overnight incubation with high concentrations of morphine, the µ-opioid receptors (MOPr) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin (DAMGO) or the DOPr agonist [D-Ala2, D-Leu5]-Enkephalin evoked hyperexcitability. The pronociceptive actions of these opioids were blocked by the DOPr antagonist SDM25N but not the MOPr antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 The hyperexcitability induced by DAMGO was reversed after a 1 h washout, but reapplication of low concentrations of DAMGO or [D-Ala2, D-Leu5]-Enkephalin restored the hyperexcitability, an effect mediated by protein kinase C. DOPr-dependent DRG neuron hyperexcitability was blocked by the endocytosis inhibitor Pitstop 2, and the weakly internalizing DOPr agonist ARM390 did not cause hyperexcitability. Bioluminescence resonance energy transfer studies in HEK cells showed no evidence of switching of G-protein signaling from Gi to a Gs pathway in response to either high concentrations or overnight incubation of opioids. Thus, chronic high-dose opioid exposure leads to opioid tolerance and features of OIH in the colon. This action is mediated by DOPr signaling and is dependent on receptor endocytosis and downstream protein kinase C signaling.SIGNIFICANCE STATEMENT Opioids are effective in the treatment of abdominal pain, but escalating doses can lead to opioid tolerance and potentially opioid-induced hyperalgesia. We found that δ-opioid receptor (DOPr) plays a central role in the development of opioid tolerance and opioid-induced hyperalgesia in colonic afferent nociceptors following prolonged exposure to high concentrations of MOPr or DOPr agonists. Furthermore, the role of DOPr was dependent on OPr internalization and activation of a protein kinase C signaling pathway. Thus, targeting DOPr or key components of the downstream signaling pathway could mitigate adverse side effects by opioids.

Keywords: colonic afferent nerves; delta-opioid receptor; dorsal root ganglia; mu-opioid receptor; opioid tolerance; opioid-induced hyperalgesia.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Analgesics, Opioid* / adverse effects
  • Animals
  • Drug Tolerance
  • Enkephalin, Ala(2)-MePhe(4)-Gly(5)- / pharmacology
  • Enkephalin, Ala(2)-MePhe(4)-Gly(5)- / therapeutic use
  • Gastrointestinal Tract
  • Hyperalgesia / chemically induced
  • Hyperalgesia / drug therapy
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Morphine* / pharmacology
  • Morphine* / therapeutic use
  • Narcotic Antagonists / pharmacology
  • Protein Kinase C
  • Receptors, Opioid
  • Receptors, Opioid, mu
  • Signal Transduction

Substances

  • Analgesics, Opioid
  • Narcotic Antagonists
  • Receptors, Opioid
  • Receptors, Opioid, mu
  • Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
  • Morphine
  • Protein Kinase C