We report on the experimental observation of a Tamm plasmon state in the near-IR region characterized by an anomalously high energy level located in the upper half of the photonic band gap. Such a "blue" Tamm plasmon was demonstrated at the interface between a conventional, completely periodic Bragg reflector and a nanostructured nonresonant thin gold grating. We study the effect of the grating period on the characteristics of the anomalous state and show that the anomaly results from a nontrivial topology of the nanograting's optical near field, which cannot be captured by the effective medium approach and transfer matrix method commonly employed in the analysis of Tamm plasmons.
Keywords: Tamm plasmon; distributed Bragg reflector; effective medium approach; hybrid optical cavity; nanograting.