Can kidney parenchyma metabolites serve as prognostic biomarkers for long-term kidney function after nephrectomy for renal cell carcinoma? A preliminary study

Clin Kidney J. 2020 Nov 4;14(2):656-664. doi: 10.1093/ckj/sfaa185. eCollection 2021 Feb.

Abstract

Objective: Nephrectomy, the standard of care for localized renal cell carcinoma (RCC), may lead to kidney function loss. Our goal was to identify prognostic biomarkers of postoperative renal function using metabolomics.

Methods: Metabolomics data from benign kidney parenchyma were collected prospectively from 138 patients with RCC who underwent nephrectomy at a single institution. The primary endpoint was the difference between the postoperative and preoperative estimated glomerular filtration (eGFR) rate divided by the elapsed time (eGFR slope). eGFR slope was calculated ∼2 years post-nephrectomy (GFR1), and at last follow-up (GFR2). A multivariate regularized regression model identified clinical characteristics and abundance of metabolites in baseline benign kidney parenchyma that were significantly associated with eGFR slope. Findings were validated by associating gene expression data with eGFR slope in an independent cohort (n = 58).

Results: Data were compiled on 78 patients (median age 62.6 years, 65.4% males). The mean follow-up was 25 ± 3.4 months for GFR1 and 69.5 ± 23.5 months for GFR2 and 17 (22%) and 32 (41%) patients showed eGFR recovery, respectively. Nephrectomy type, blood lipids, gender and 23 metabolites from benign parenchyma were significantly associated with eGFR slope. Some metabolites associated with eGFR slope overlapped with previously reported chronic kidney disease-related processes. Subgroup analysis identified unique 'metabolite signatures' by older age, nephrectomy type and preoperative eGFR.

Conclusions: Nephrectomy type, gender, blood lipids and benign parenchyma metabolites at nephrectomy were associated with long-term kidney function. On further study, these metabolites may be useful as potential biomarkers and to identify novel therapeutic targets for malignancy-associated renal disease.

Keywords: chronic kidney disease; fatty acid oxidation; kidney function; metabolomics; nephrectomy; renal cell carcinoma.