The design of defects and porous structures into metallene with functional surfaces is highly desired to improve its permeability, surface area, and active sites, but remains a great challenge. In this work, polyallylamine-encapsulated Ir metallene with defects and porous structure (Ir@PAH metallene) is easily fabricated by a one-step wet chemical reduction method. The Ir@PAH metallene exhibits excellent hydrogen evolution reaction (HER) performance with an overpotential of only 14 mV at 10 mA cm-2 , a low Tafel slope of 31.2 mV dec-1 , and almost no activity decay after stability test. The abundant defects and pores as well as several-atomic-layer nanosheet structures of Ir@PAH metallene provide a large specific surface area, high conductivity, and efficient mass transport/diffusion. In addition, surface-functionalized PAH molecules can modulate the electronic structure through strong Ir-N interaction and act as proton carriers to capture hydrogen ions, which is very beneficial for the HER in acidic media. This work provides a useful strategy for the synthesis of the defective and porous metallene with functionalized surfaces for various catalytic applications.
Keywords: Ir metallene; defects; hydrogen evolution reaction; polyallylamine; pores.
© 2022 Wiley-VCH GmbH.