Patients with lung cancer at the same stage may have markedly different overall outcome and a lack of specific biomarker to predict lung cancer outcome. Heat-shock protein 90 β (HSP90β) is overexpressed in various tumor cells. In this study, the ELISA results of HSP90β combined with CEA, CA125, and CYFRA21-1 were used to construct a recursive partitioning decision tree model to establish a four-protein diagnostic model and predict the survival of patients with lung cancer. Survival analysis showed that the recursive partitioning decision tree could distinguish the prognosis between high- and low-risk groups. Results suggested that the joint detection of HSP90β, CEA, CA125, and CYFRA21-1 in the peripheral blood of patients with lung cancer is plausible for early diagnosis and prognosis prediction of lung cancer.
Keywords: HSP90β; decision tree model; lung cancer; prognosis.
© 2022. Higher Education Press.