Absolute determination of chemical kinetic rate constants by optical tracking the reaction on the second timescale using cavity-enhanced absorption spectroscopy

Phys Chem Chem Phys. 2022 Mar 23;24(12):7396-7404. doi: 10.1039/d2cp00206j.

Abstract

We report a new spectroscopic platform coupled to an atmospheric simulation chamber for the direct determination of chemical rate constants with high accuracy at a second time-scale resolution. These developed analytical instruments consist of an incoherent broadband cavity enhanced absorption spectrometer using a red light emitting diode (LED) emitting at ∼662 nm (LED-IBBCEAS) associated with a multipass cell direct absorption spectrometer (MPC-DAS) coupled to an external cavity quantum cascade laser (EC-QCL) operating in the mid-infrared region at approximately 8 μm (EC-QCL-MPC-DAS). Spectrometers were employed to investigate the NO3-initiated oxidation of four selected volatile organic compounds (VOCs) for the determination of the corresponding rate constants with a dynamic range of 5 orders of magnitude (from 10-11 to 10-16 cm3 molecule-1 s-1). Rate constants of (6.5 ± 0.5) × 10-15, (7.0 ± 0.4) × 10-13, and (5.8 ± 0.5) × 10-16 cm3 molecule-1 s-1 for propanal, isoprene and formaldehyde, respectively, were directly determined by fitting the measured concentration-time profiles of NO3 and VOCs (measured using a proton transfer reaction time-of-flight mass spectrometer, PTR-ToF-MS) to chemical models based on the FACSIMILE simulation software (version 4.2.50) at 760 torr and 293 ± 2 K. The obtained rate constants are in good agreement with the most recent recommendations of the IUPAC (International Union of Pure and Applied Chemistry). In addition, a rate constant of (2.60 ± 0.30) × 10-11 cm3 molecule-1 s-1 for the oxidation of 2-methoxyphenol by NO3 radicals was first determined using the absolute kinetic method. Compared to the mostly used indirect relative rate method, the rate constant uncertainty is reduced from ∼20% to ∼12%. The results demonstrated the high potential of using modern spectroscopic techniques to directly determine the chemical reaction rate constants.