Formulation of Chitosan-Coated Apigenin Bilosomes: In Vitro Characterization, Antimicrobial and Cytotoxicity Assessment

Polymers (Basel). 2022 Feb 25;14(5):921. doi: 10.3390/polym14050921.

Abstract

We prepared apigenin (APG)-loaded bilosomes (BLs) and evaluated them for vesicle size, zeta-potential and encapsulation efficiency. The formulations were prepared with cholesterol (CHL), sodium deoxy cholate (SDC), Tween 80 (T80) and phosphatidylcholine (PC) using solvent evaporation method. The prepared formulations showed the optimum result was coated with much mucoadhesive polymer chitosan (CH, 0.25 and 0.5% w/v). The chitosan-coated bilosomes (CH-BLs) were further evaluated for surface morphology, drug−polymer interaction, mucoadhesion, permeation, antimicrobial activity and cell viability. The prepared APG-BLs showed nano-metric size (211 ± 2.87 nm to 433 ± 1.98 nm), polydispersibility index <0.5, negative zeta potential (−15 to −29 mV) and enhanced encapsulation efficiency (69.5 ± 0.93 to 81.9 ± 1.3%). Based on these findings, selected formulation (F2) was further coated with chitosan and showed a marked increase in vesicle size (298 ± 3.56 nm), a positive zeta potential (+17 mV), superior encapsulation efficiency (88.1 ± 1.48%) and improved drug release (69.37 ± 1.34%). Formulation F2C1 showed significantly enhanced permeation and mucoadhesion (p < 0.05) compared to formulation F2 due to the presence of CH as a mucoadhesive polymer. The presence of CH on the surfaces of BLs helps to open the tight membrane junctions and leads to enhanced permeation. A TEM study revealed non-aggregated smooth surface vesicles. The antimicrobial and cell viability assessment revealed better effects in terms of zone of inhibition and cell line assessment against two different cancer cell line. From the study, it can be concluded that APG-CHBLs could be a superior alternative to conventional delivery systems.

Keywords: antimicrobial; apigenin; bilosomes; cell viability; chitosan.