The Influence of Bi2O3 Nanoparticle Content on the γ-ray Interaction Parameters of Silicon Rubber

Polymers (Basel). 2022 Mar 6;14(5):1048. doi: 10.3390/polym14051048.

Abstract

In this study, synthetic silicone rubber (SR) and Bi2O3 micro- and nanoparticles were purchased. The percentages for both sizes of Bi2O3 were 10, 20 and 30 wt% as fillers. The morphological, mechanical and shielding properties were determined for all the prepared samples. The Linear Attenuation Coefficient (LAC) values of the silicon rubber (SR) without Bi2O3 and with 5, 10, 30 and 30% Bi2O3 (in micro and nano sizes) were experimentally measured using different radioactive point sources in the energy range varying from 0.06 to 1.333 MeV. Additionally, we theoretically calculated the LAC for SR with micro-Bi2O3 using XCOM software. A good agreement was noticed between the two methods. The NaI (Tl) scintillation detector and four radioactive point sources (Am-241, Ba-133, Cs-137 and Co-60) were used in the measurements. Other shielding parameters were calculated for the prepared samples, such as the Half Value Layer (HVL), Mean Free Path (MFP) and Radiation Protection Efficiency (RPE), all of which proved that adding nano-Bi2O3 ratios of SR produces higher shielding efficiency than its micro counterpart.

Keywords: HVL; LAC; RPE; nano-Bi2O3; silicon rubber.