Effect of Isothermal Conditions on the Charge Trapping/Detrapping Parameters in e-Beam Irradiated Thermally Aged XLPE Insulation in SEM

Materials (Basel). 2022 Mar 4;15(5):1918. doi: 10.3390/ma15051918.

Abstract

The effect of isothermal conditions on the trapping/detrapping process of charges in e-beam irradiated thermally aged XLPE insulation in scanning electron microscopy (SEM) has been investigated. Different isothermal conditions ranging from room temperature to 120 °C are applied on both unaged and aged XLPE samples (2 mm thick) by a suitable arrangement associated with SEM. For each applied test temperature, leakage, and influence currents have been measured simultaneously during and after e-beam irradiation. Experimental results show a big difference between the fresh and aged material regarding trapping and detrapping behavior. It has been pointed out that in the unaged material deep traps govern the process, whereas the shallow traps take part in the aged one. Almost all obtained results reveal that the trapped charge decreases and then increases as the temperature increases for the unaged sample. A deflection temperature corresponding to a minimum is observed at 50 °C. However, for the aged material, the maximum trapped charge decreases continuously with increasing temperature, and the material seems to trap fewer charges under e-beam irradiation at high temperature. Furthermore, thermal aging leads to the occurrence of detrapping process at high temperatures even under e-beam irradiation, which explains the decrease with time evolution of trapped charge during this period. The recorded leakage current increases with increasing temperature for both cases with pronounced values for aged material. The effect of temperature and thermal aging on electrostatic influence factor (K) and total secondary electron emission yield (σ) were also studied.

Keywords: SEM; XLPE; secondary electron emission SEE; thermal aging; trapped charge.