We evaluated the effects of Mn in juvenile Yunlong groupers (Epinephelus moara ♀ × E. lanceolatus ♂). The groupers were exposed to Mn2+ (0, 0.5, 1, 2, and 4 mg/L) for 30 days after which they were assessed. The results indicate the accumulation of Mn in fish depended on dose and time. Mn2+ accumulation in tissues occurred in the following order: liver > gills > intestine > muscle. The concentrations of SOD and CAT in the fish significantly increased after 10 and 20 days of treatment with 4 mg/L Mn2+ but decreased after 30 days. Similarly, GSH and GPx levels increased after 10 days of exposure to 2 and 4 mg/L Mn2+ but decreased after 20 and 30 days of exposure. Additionally, malondialdehyde levels significantly increased after exposing the fish to 2 and 4 mg/L Mn2+ for 10, 20, and 30 days. In addition, liver HSP70 and HSP90 levels significantly increased at days 20 and 30 in all fish exposed to Mn2+. In addition, when Mn2+ concentration was 1, 2, and 4 mg/L, liver C3 and C4 levels were significantly increased after 10, 20, and 30 days. Conversely, the levels of LZM and IgM significantly decreased. Mn2+ also significantly upregulated the expression of genes associated with immunity (tlr3, tnf-α, il-1β, and il-6) in the fish, which suggests that it induces immunotoxicity by altering the immune response. Overall, the findings showed that Mn2+ can disrupt grouper health by bioaccumulating in the fish and subsequently inducing oxidative stress and immune responses. These results can help elucidate the mechanism by which manganese induces toxicity in marine fish. Additionally, they provide a new perspective regarding the detrimental effects of heavy metals in fish.
Keywords: Bioaccumulation; Epinephelus moara♀ × E. lanceolatus♂; Immune response; Manganese; Oxidative stress.
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.