We propose and implement a novel scheme for dissipatively pumping two qubits into a singlet Bell state. The method relies on a process of collective optical pumping to an excited level, to which all states apart from the singlet are coupled. We apply the method to deterministically entangle two trapped ^{40}Ca^{+} ions. Within 16 pumping cycles, an initially separable state is transformed into one with 83(1)% singlet fidelity, and states with initial fidelity of ⪆70% converge onto a fidelity of 93(1)%. We theoretically analyze the performance and error susceptibility of the scheme and find it to be insensitive to a large class of experimentally relevant noise sources.