Background: Chronic cerebral ischemia (CCI) is a major cause of subcortical ischemic vascular dementia. Here, we examined the neuroprotective action of the A3 adenosine receptor agonist N6-(3-iodobenzyl)-adenosine-5'-N-methylcarboxamide (IB-MECA) on white matter lesions following CCI.
Methods: A CCI mouse model was established using unilateral common carotid artery occlusion. IB-MECA and 3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2 phenyl-4-propyl-3-pyridine carboxylate (MRS1523), an antagonist of the A3 adenosine receptor, were administered by intraperitoneal injection. The inhibitory avoidance test was used to examine changes in memory performance. Microtubule-associated protein 2 (MAP-2) and neurofilament were assessed by immunohistochemistry, while expressions of phosphorylated extracellular signal-regulated kinase (ERK), ERK, interferon-beta (IFN-β), and glial fibrillary acidic protein (GFAP) were assessed by western blot assay.
Results: The memory retention score was reduced in vehicle-treated mice compared with IB-MECA-treated (p < 0.05) mice. Compared to sham-operated mice, p-ERK, GFAP and IFN-β were increased, while MAP-2 and neurofilament were reduced in vehicle-treated mice (p < 0.01 for each). IB-MECA reduced ERK phosphorylation (p < 0.01) and GFAP expression (p < 0.05), but upregulated MAP-2 and IFN-β (p < 0.01 for both), compared with vehicle. MRS1523 suppressed the effects of IB-MECA on the memory deficit, ERK phosphorylation, and on MAP-2, neurofilament, GFAP and IFN-β levels.
Conclusion: Our results suggest that A3 adenosine receptor stimulation ameliorates CCI-induced memory deficits, modulates the ERK signaling pathway, preserves MAP-2 and neurofilament expression, regulates GFAP expression, and upregulates the anti-inflammatory cytokine IFN-β. Thus, the A3 adenosine receptor may be a therapeutic target for treatment of cognitive disorders and cerebral inflammatory diseases.
Keywords: A3 adenosine receptor; ERK; IFN-β; Memory; White matter.
Copyright © 2022 Elsevier B.V. All rights reserved.