Tumor heterogeneity is a hallmark of cancer and one of the primary causes of resistance to therapies. Triple-negative breast cancer (TNBC), which accounts for 15-20% of all breast cancers and is the most aggressive subtype, is very diverse, connected to metastatic potential and response to therapy. It is a very diverse disease at the molecular, pathologic, and clinical levels. TNBC is substantially more likely to recur and has a worse overall survival rate following diagnosis than other breast cancer subtypes. Chemokines, low molecular weight proteins that stimulate chemotaxis, have been shown to control the cues responsible for TNBC heterogeneity. In this review, we have focused on tumor heterogeneity and the role of chemokines in modulating tumor heterogeneity, since this is the most critical issue in treating TNBC. Additionally, we examined numerous cues mediated by chemokine networks that contribute to the heterogeneity of TNBC. Recent developments in our knowledge of the chemokine networks that regulate TNBC heterogeneity may pave the way for developing effective therapeutic modalities for effective treatment of TNBC.
Keywords: Breast cancer; Chemokines; EMT; Stemness; TNBC; Tumor heterogeneity.
Copyright © 2022. Published by Elsevier Ltd.