PD-L1 is widely expressed in a variety of tumors, including NSCLC, melanoma, renal cell carcinoma, gastric cancer, hepatocellular as well as cutaneous and various leukemias, multiple myeloma and so on. Herein, we designed a novel peptide imaging agent (Al[18F]-NOTA-IPB-PDL1P) that specifically targets PD-L1 expressed in tumors. The overall radiochemical yield of Al[18F]-NOTA-IPB-PDL1P from 18F- was 10-15% (corrected radiochemical yield) within 20 min and the radiochemical purity of Al[18F]-NOTA-IPB-PDL1P was > 95% with a molar activity of 44.4-64.8 GBq/μmol. The lipophilicity logP value of Al[18F]-NOTA-IPB-PDL1P at pH 7.4 was -1.768 ± 0.007 (n = 3). In the cellular uptake experiment, both HCT116 and PC3 cells dispalyed high uptake to Al[18F]-NOTA-IPB-PDL1P. The results of biodistribution showed that the uptake of Al[18F]-NOTA-IPB-PDL1P was high in kidneys, gall bladder and lung, and low in muscle and brain. In vivo micro PET studies, both HCT116 and PC3 tumors displayed high uptake for Al[18F]-NOTA-IPB-PDL1P, the tumor/muscle (T/M) radio was 2.93 and 3.57 respectively at 120 min. All the results indicate that Al[18F]-NOTA-IPB-PDL1P may have potential to be a PET imaging agent of tumors with high PD-L1 expression.
Keywords: 4-(p-iodophenyl) butyric acid; Micro PET/CT; PD-L1; Peptide probe; Tumor imaging.
Copyright © 2022. Published by Elsevier Inc.