Background: Neuroinflammatory diseases such as encephalitis, meningitis, multiple sclerosis and other neurological diseases with inflammatory components, have demonstrated a need for diagnostic biomarkers to define treatable and reversible neuroinflammation. The development and clinical validation of a targeted translational inflammation panel using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) could provide early diagnosis, rapid treatment and insights into neuroinflammatory mechanisms.
Methods: An inflammation panel of 13 metabolites (neopterin, tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, xanthurenic acid, anthranilic acid, 3-hydroxyanthranilic acid, quinolinic acid, picolinic acid, arginine, citrulline and methylhistamine) was measured based on a simple precipitation and filtration method using minimal CSF volume. The chromatographic separation was achieved using the Acquity UPLC BEH C18 column in combination with a gradient elution within a 12-min time frame. Acute encephalitis (n=10; myelin oligodendrocyte glycoprotein encephalitis n=3, anti-N-methyl-D-aspartate encephalitis n=2, acute disseminated encephalomyelitis n=2, herpes simplex encephalitis n=1, enteroviral encephalitis n=1) and frequency-matched non-inflammatory neurological disease controls (n=10) were examined.
Findings: The method exhibited good sensitivity as the limits of quantification ranged between 0.75 and 3.00 ng mL-1, good linearity (r2 > 0.99), acceptable matrix effects (<± 19.4%) and high recoveries (89.8-109.1 %). There were no interferences observed from common endogenous CSF metabolites, no carryover and concordance with well-established clinical methods. The accuracy and precision for all analytes were within tolerances, at <± 15 mean relative error and < 15 % coefficient of variation respectively. All analytes in matrix-matched pooled human CSF calibrators and human CSF extracts were stable for 24 h after extraction and two freeze-thaw cycles.
Interpretation: The method was successfully applied to a pilot study investigating acute brain inflammation case-control groups. Statistical discrimination between encephalitis (n=10) and control groups (n=10) was achieved using orthogonal partial least squares discriminant analysis and heatmap cluster analysis. Statistical analysis of the measured metabolites identified significant alterations of seven metabolites in the tryptophan-kynurenine pathway (tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid, 3-hydroxyanthranilic acid, quinolinic acid), arginine and neopterin in presence of acute neuroinflammation. Furthermore, elevated ratios of CSF kynurenine/tryptophan ratio, quinolinic acid/kynurenic acid and anthranilic acid/3-hydroxyanthranilic acid provided strong discriminative power for neuroinflammatory conditions. Studies of large groups of neurological diseases are required to explore the sensitivity and specificity of the inflammation panel.
Funding: Financial support for the study was granted by Dale NHMRC Investigator grant APP1193648, Petre Foundation, Cerebral Palsy Alliance and Department of Biochemistry at the Children's Hospital at Westmead.
Keywords: cerebrospinal fluid; clinical validation; neopterin; neuroinflammation; nitric oxide pathway; tryptophan-kynurenine pathway.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.