Metal-Doped PdH(111) Catalysts for CO2 Reduction

ChemSusChem. 2022 May 20;15(10):e202200008. doi: 10.1002/cssc.202200008. Epub 2022 Apr 8.

Abstract

PdH-based catalysts hold promise for both CO2 reduction to CO and the hydrogen evolution reaction. Density functional theory is used to systematically screen for stability, activity, and selectivity of transition metal dopants in PdH. The transition metal elements Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Ag, Cd, Hf, Ta, W, and Re are doped into PdH(111) surface with six different doping configurations: single, dimer, triangle, parallelogram, island, and overlayer. We find that several dopants, such as Ti and Nb, have excellent predicted catalytic activity and CO2 selectivity compared to the pure PdH hydride. In addition, they display good stability due to their negative doping formation energy. The improved performance can be assigned to reaction intermediates forming two bonds consisting of one C-Metal and one O-Metal bond on the PdH surface, which break the scaling relations of intermediates, and thus have stronger HOCO* binding facilitating CO2 activation.

Keywords: Density functional theory; doping; kinetic activity; palladium hydride; scaling relations.