Ferroelectric materials exhibit a strong coupling between strain and electrical polarization. In epitaxial thin films, the strain induced by the substrate can be used to tune the domain structure. Substrates of rare-earth scandates are sometimes selected for the growth of ferroelectric oxides because of their close lattice match, which allows the growth of low-strain dislocation-free layers. Transmission electron microscopy (TEM) is a frequently used technique for investigating ferroelectric domains at the nanometer-scale. However, it requires to thin the specimen down to electron transparency, which can modify the strain and the electrostatic boundary conditions. Here, we have investigated a 320 nm thick epitaxial layer of BaTiO3grown onto an orthorhombic substrate of NdScO3with interfacial lattice strains of -0.45% and -0.05% along the two in-plane directions. We show that the domain structure of the layer can be significantly altered by TEM sample preparation depending on the orientation and the geometry of the lamella. In the as-grown state, the sample shows an anisotropica/cferroelastic domain pattern in the direction of largest strain. If a TEM lamella is cut perpendicular to this direction so that strain is released, a new domain pattern is obtained, which consists of bundles of thin horizontal stripes parallel to the interfaces. These stripe domains correspond to a sheared crystalline structure (orthorhombic or monoclinic) with inclined polarization vectors and with at least four variants of polarization. The stripe domains are distributed in triangular-shaped 180° domains where the average polarization is parallel to the growth direction. The influence of external electric fields on this domain structure was investigated usingin situbiasing and dark-field imaging in TEM.
Keywords: BaTiO3; TEM; dark-field imaging; ferroelectrics; in situ biasing.
Creative Commons Attribution license.