1.53 W all-solid-state nanosecond pulsed mid-infrared laser at 6.45 µm

Opt Lett. 2022 Mar 15;47(6):1359-1362. doi: 10.1364/OL.446336.

Abstract

A compact and robust all-solid-state mid-infrared (MIR) laser at 6.45 µm with high average output power and near-Gaussian beam quality is demonstrated. A maximum output power of 1.53 W with a pulse width of approximately 42 ns at 10 kHz is achieved using a ZnGeP2 (ZGP) optical parametric oscillator (OPO). This is the highest average power at 6.45 µm of any all-solid-state laser to the best of our knowledge. The average beam quality factor is measured to be M2 = 1.19. Moreover, high output power stability is confirmed, with a power fluctuation of less than 1.35% rms over 2 h, and the laser can run efficiently for more than 500 h in total. Using this 6.45 µm pulse as a radiation source, ablation of animal brain tissue is tested. Furthermore, the collateral damage effect is theoretically analyzed for the first time, to the best of our knowledge, and the results indicate that this MIR laser has excellent ablation ability, making it a potential replacement for free electron lasers.

MeSH terms

  • Animals
  • Lasers, Solid-State*
  • Light