Influence of surface roughness on the lasing characteristics of optically pumped thin-film GaN microdisks

Opt Lett. 2022 Mar 15;47(6):1521-1524. doi: 10.1364/OL.449482.

Abstract

Optically pumped whispering-gallery mode (WGM) lasing is observed from a thin-film GaN microdisk processed from GaN-on-Si InGaN/GaN multi-quantum well wafers by selective wet-etch removal of the substrate. Compared with thin-film microdisks processed from GaN-on-sapphire wafers through laser lift-off of the sapphire substrate, the exposed surface is significantly smoother as laser-induced damage is avoided, with a root-mean-square roughness of 1.3 nm compared with 5.8 nm of the latter wafer. The ∼8-μm diameter microdisks, fabricated by pattern transfer from a silica microsphere and dry etching, benefit from the surface smoothness to offer superior optical confinement within the cavity. WGM lasing thresholds of ∼2.9 mJ/cm2 and ∼3.5 mJ/cm2 with quality (Q)-factors of ∼3100 and ∼1700 are observed at the peak lasing wavelengths of ∼453 nm and ∼532 nm, respectively, which are significantly better than thin-film microdisks processed from GaN-on-sapphire wafers despite lower internal quantum efficiency, highlighting the importance of surface smoothness in such optical cavities.