Flexible pressure sensors are one of the most important components in the fields of electronic skin (e-skin), robotics, and health monitoring. However, the application of pressure sensors in practice is still difficult and expensive due to the limited sensing properties and complex manufacturing process. The emergence of MXene, a red-hot member of the 2D nanomaterials, has brought a brand-new breakthrough for pressure sensing. Ti3 C2 Tx is the most popular studied MXene in the field of pressure sensing and shows good mechanical, electrical properties, excellent hydrophilicity, and extensive modifiability. It will ameliorate the properties of the sensitive layer and electrode layer of the pressure sensor, and further apply pressure sensing to many fields, such as e-skin flexibility. Herein, the preparation technologies, antioxidant methods, and properties of MXene are summarized. The design of MXene-based microstructures is introduced, including hydrogels, aerogels, foam, fabrics, and composite nanofibers. The mechanisms of MXene pressure sensors are further broached, including piezoresistive, capacitive, piezoelectric, triboelectric, and potentiometric transduction mechanism. Moreover, the integration of multiple devices is reviewed. Finally, the chance and challenge of pressure sensors improved by MXene smart materials in future e-skin and the Internet of Things are prospected.
Keywords: MXenes; all-in-one sensors; integrated systems; mechanical-potential conduction mechanism; pressure sensors.
© 2022 Wiley-VCH GmbH.