Release of untreated effluent from processing or manufacturing industries and other commercial premises into water bodies is a major threat to environment and human health. In this regard, the effluent generated from laboratories and other research facilities is of great concern. Among other harmful chemicals, the effluent is rich in toxic organic dyes, which get exposed to the environment and pose serious health risk. The dyes used in nucleic acid analysis specially the DNA dyes are known for their teratogenicity and mutagenic potential, which mainly depends upon the organism and circumstances under which it is exposed. Among animals and humans, exposure to theses dyes may lead to irritation in mouth, eyes and respiratory tract and many other possible effects which are yet to be explored. To overcome these problems, dyes present in the effluents from laboratories must be degraded to non-toxic forms. Various strategies have been proposed and investigated for degradation and remediation of contaminated laboratory effluent. As a modern and cost-effective technique, biodegradation using microbes and plants is potentially eco-friendly and sustainable technique for detoxifying these dyes. In this article, we have discussed and reviewed the structure, properties and toxicity profile of prominent nucleic acid dyes, along with the strategies of remediation of laboratory effluents contaminated with these dyes. In addition, we have also discussed the feasibility and limitations of these remediation strategies and identified research gaps that can help researchers to explore more effective solutions to manage this area of great concern. We have also reviewed various less toxic alternatives of these common as safer options of these dyes.
Keywords: Alternative DNA dyes; DNA dyes; Dye degradation; Nucleic acid dyes; Toxicity.
© 2022. Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i.