Wind farm noise shifts vocalizations of a threatened shrub-steppe passerine

Environ Pollut. 2022 Jun 15:303:119144. doi: 10.1016/j.envpol.2022.119144. Epub 2022 Mar 14.

Abstract

Wind energy has experienced a notable development during the last decades, driving new challenges for animal communities. Although bird collisions with wind turbines and spatial displacement due to disturbance have been widely described in the literature, other potential impacts remain unclear. In this study, we addressed the effect of turbine noise on the vocal behaviour of a threatened shrub-steppe passerine highly dependent on acoustic communication, the Dupont's lark Chersophilus duponti. Based on directional recordings of 49 calling and singing males exposed to a gradient of turbine noise level (from 15 up to 51 dBA), we tested for differences in signal diversity, redundancy, and complexity, as well as temporal and spectral characteristics of their vocalizations (particularly the characteristic whistle). Our results unveiled that Dupont's lark males varied the vocal structure when subject to turbine noise, by increasing the probability of emitting more complex whistles (with increased number of notes) and shifting the dominant note (emphasizing the longest and higher-pitched note). In addition, males increased duration and minimum frequency of specific notes of the whistle, while repertoire size and signal redundancy remain constant. To our knowledge, this is the first study reporting multiple and complex responses on the vocal repertoire of animals exposed to turbine noise and unveiling a shift of the dominant note in response to anthropogenic noise in general. These findings suggest that the Dupont's lark exhibits some level of phenotypic plasticity, which might enable the species to cope with noisy environments, although the vocal adjustments observed might have associated costs or alter the functionality of the signal. Future wind energy projects must include fine-scale noise assessments to quantify the consequences of chronic noise exposure.

Keywords: Acoustic signal detection; Noise masking; Turbine noise; Vocalization adjustments; Vocalization structure.

MeSH terms

  • Acoustics
  • Animals
  • Male
  • Noise*
  • Passeriformes* / physiology