Aberrant newborn T cell and microbiota developmental trajectories predict respiratory compromise during infancy

iScience. 2022 Mar 1;25(4):104007. doi: 10.1016/j.isci.2022.104007. eCollection 2022 Apr 15.

Abstract

Neonatal immune-microbiota co-development is poorly understood, yet age-appropriate recognition of - and response to - pathogens and commensal microbiota is critical to health. In this longitudinal study of 148 preterm and 119 full-term infants from birth through one year of age, we found that postmenstrual age or weeks from conception is a central factor influencing T cell and mucosal microbiota development. Numerous features of the T cell and microbiota functional development remain unexplained; however, by either age metric and are instead shaped by discrete perinatal and postnatal events. Most strikingly, we establish that prenatal antibiotics or infection disrupt the normal T cell population developmental trajectory, influencing subsequent respiratory microbial colonization and predicting respiratory morbidity. In this way, early exposures predict the postnatal immune-microbiota axis trajectory, placing infants at later risk for respiratory morbidity in early childhood.

Keywords: Immunology; Microbiome.